STORM RESTORATION

OVERVIEW

Utilities are under constant pressure to improve how they handle the direct threats storms cause to their operations. Ice storms, wildfires, thunderstorms, tornados, hurricanes and other weather events can cause massive damage to transmission and distribution infrastructure, and they impact utility companies' customers as well as the companies' financial top lines. According to the U.S. Department of Energy (DOE), power outages cost more than \$150 billion annually, so it's important for utilities to manage the power grid, not only the safety and comfort of customers, but also for the bottom line. A 2020 hurricane that affected the Gulf States caused weeks of power outages and resulted in millions of man hours and hundreds of millions of dollars in restoration costs.

The Current Approach Needs To Change

Immediately following a storm or other damage-causing event, utilities send crews out to assess the damage to their assets, such as poles, wires, transformers, substations, etc., and then they prioritize restoration activities. Depending on the extent and severity of the damage, to augment existing field maintenance crews, employees with various jobs in the utility take on the role of temporary damage assessors to perform line-of-sight physical inspection of the storm damage and manually call in their reports to the storm headquarters. These damage assessors then physically drive to the next assigned area with suspected damage and repeat this activity until all the damage is accounted for. There are several issues with this approach:

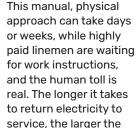
Crew Management

Tens of thousands of workers can show up at once for storm remediation. Staging them and dispatching them in an efficient manner can be very difficult without timely, reliable, accurate information from the field. This results in overpayment, restoration delays, and confusion.

Safety

More workers in the field immediately following a weather event increases the chances that things could go wrong. Depending on the type of storm and the cause of the damage, the timeframe following a storm can be an extremely dangerous time to be navigating roadways and trying to gain physical access to damaged areas with numerous hazards present (downed trees, downed wires, standing water on the ground, ice, unexpected fires, etc.).

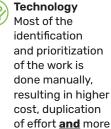
Access


0-

Staging Zones

Getting the right material and resources to the right jobs at the right time is paramount during storm work, so establishing optimally placed staging zones is very important. Without real-time reliable information of what assets need to be repaired in what sequence, it is difficult to optimize staging areas.

Damage assessors may have difficulty navigating physical access to gain line of sight to critical issues due to location access issues or infrastructure damage.


impact to the people

without power.

Training

Temporary damage assessors have very basic training in the identification of assets, are prone to misdiagnosing issues, and can often miss damage in the field. This can lead to further diagnosis and delays by qualified personnel, and corresponding expensive rework.

errors.

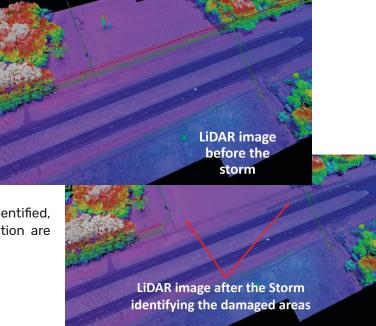
2021 Copyright CobraVision. All rights reserved. Screen Shot Credit: Oracle

www.cobravision.ai

email: info@cobravision.ai

Once the damage is all identified and assessed, it becomes a massive logistical nightmare to coordinate the work. Hundreds, if not thousands, of poles, transformers, switches, lines, and substations need to be repaired or replaced. Each of these damaged assets can be a collection of work orders that become an entire project, possibly requiring dozens of people, and involve complicated coordinating of critical equipment such as cranes and helicopters. Further, coordinating across remote locations can present logistical challenges such as forcing workers to get to the site via ATVs, air boats, or delivering material on floating craft. Let's not forget that each of the lines and equipment must be **inspected again** before they can be energized.

With such monumental challenges coordinating across labor, material and equipment and other expenses after a weather event, the industry is seeking different approaches to solving these challenges.


A Different Path Forward

Fundamentally a combination of three technologies will make the most significant impact on improving storm restoration outcomes—artificial intelligence, drones and LiDAR, which will be used to provide an immediate assessment of damaged assets. Once the rapid, automated damage assessment is complete, work orders are prioritized into work packages and then scheduled for execution. The net impact is that this will allow utilities to restore normal grid operations faster and more safely.

Identify Work

Once the weather event has passed, drones, helicopters, or fixed wing craft outfitted with LiDAR will take to the skies to perform aerial scans of the areas that would have likely accumulated damage. Artificial intelligence will analyze these LiDAR point clouds and provide a damage assessment to the utility, enabling quick deployment of work crews to the most important locations. Below is an aerial LiDAR point cloud that shows a 3D representation of pre- and post-storm.

> Once work has been identified, prioritization and execution are just as important.

2021 Copyright CobraVision. All rights reserved. Screen Shot Credit: Oracle

www.cobravision.ai

email: info@cobravision.ai

Prioritize Work

	Portfolio Analysis > Prioritization Mat	rix								
	Actions - Show: All	• @ O								
	Name	Evaluation Score	Customer Risk Customer # Customers on Criticality Index Feeder		Public Safety Contractor Safety		Compliance ISO Compliance		Generation Interconnect # of connections	
	A Projects and Proposals									
	🙏 District 1 - Pole Renewal 🗔	86.49%	High	High	High	High	Very High	Very High	Low	Medium
	ANHG CY909-1 (NHR) RE	73.17%	Medium	High	High	High	Medium	Low	High	Low
	🙏 District 3 - Pole Renewal 🗔	65.58%	High	Medium	Medium	High	Very High	Very Low	Medium	Low
	ADH-905-09 FULTON - B	63.18%	High	Medium	Medium	High	High	Very High	Low	High
	ADH-905-09 FULTON - B	62.79%	Low	High	Low	High	High	Very High	Low	Medium
	A TG-TSS33 HAYFORD VO	56.56%	Low	Low	Low	Medium	Medium	Very Low	Medium	Very High
	ATG-TSS33 HAYFORD VO	80.26%	High	Very Low	High	Medium	High	Very High	Medium	Very High
	🙏 District 2 - Pole Renewal 🗔	64.22%	High	Low	Medium	Very High	Medium	Very Low	Medium	High
	ADH - 801-11 W FULTON 📮	74.08%	High	Low	High	Low	Medium	High	High	Very Low
0	NHG EY583 Y3454 REP 🗔	45.06%	Low	Very Low	Low	Very Low	Medium	Very High	Low	High
	A TG-SS821 MARQUETTE □	64.68%	High	High	Medium	Low	Medium	High	Medium	Low
	ADH-905-09 FULTON - B	68.90%	Low	Medium	High	Low	Medium	High	Medium	Medium

F	Portfolio Analysis > Prioritizati	on Ma	trix								
A	ctions - Show: All		÷	8	0						
	Name	e Evaluation Score			Inter-company	m Interconnect – # of connections	Existing Positions Open	tion Energization Extent of damage on position	Reconstruction Exter		
	A District 1 - Pole Renewal				86.49%	High	Very High	Very High	High	Medium	High
	A NHG CY909-1 (NHR) RE				73.17%	Low	Low	High	High	Medium	Very High
-	🙏 District 3 - Pole Renewal				65.58%	High	High	High	Low	Medium	High
	A DH-905-09 FULTON - B	9			63.18%	Medium	Low	Low	Low	Low	Medium
	A DH-905-09 FULTON - B				62.79%	High	Medium	High	Low	Very High	Medium
	TG-TSS33 HAYFORD VO				56.56%	Medium	Very High	Medium	Very High	Very Low	Very High
	A TG-TSS33 HAYFORD VO				80.26%	High	Low	Medium	High	Very High	Very High
	🙏 District 2 - Pole Renewal				64.22%	Low	Very High	Low	Very High	Medium	Medium
	A DH - 801-11 W FULTON				74.08%	Medium	High	High	Very High	High	Very Low
0	ANHG EY583 Y3454 REP				45.06%	Medium	Medium	Low	Very Low	Medium	Very Low
	A TG-SS821 MARQUETTE				64.68%	High	Low	High	Medium	High	Low
	ADH-905-09 FULTON - B				68.90%	Medium	Low	High	High	Medium	Very Low

Transmission and distribution each have different restoration prioritization criteria. While Transmission's focus is primarily on re-energizing substations via at least one line position, distribution is focused on analyzing priority based on feeder networks, placing higher priority on feeders that supply a higher number of customers or more critical facilities. The illustration above shows that no matter the prioritization scenario, work packages can quickly be analyzed, scored and a resulting priority assigned across hundreds or thousands of projects.

2021 Copyright CobraVision. All rights reserved. Screen Shot Credit: Oracle

Execute Work

Actions + View Simple Tasks	View • 🔘 😚	ĸ			Quick Filters	All Assigned Users	At Companies	- All Statuses				
November 2017			×	< Today > >	Day Week	v						
				Planning Period: 19-Nov-17 -	30-Dec-17			0.0000000000000000000000000000000000000				
	Sun 19	Mon 20	Tue 21	Wed 22	Thu 23	Fri 24	Sat 25	Urag tasks to a different wea				
No Actually	C EC1100 Site Preparation		2017									
0					Soil Reports			Nov 19 - 25 Last week				
\oplus					84.3 🖀 👁			13 Tasks Due				
101000	C EC1190-Never Technical Data an Heat Pampa.											
EC1100-Site Preparat		Check solenoid valves	Reconnect hoses	Contirm Quantities	Update ratchet clamps			Nov 26 - Dec 2 This week				
Ct150-Clearing and		85 🖽	~		88 🗃			5 Tasks Due				
		Restart Motor			Bacitill hole with aggregate			Dec 3 - 9				
EC1160-Review Techn		21			88 📶			Next week				
0.000	© EC1150-Clearno and Gradoling											
EC1190-Prepare and			Setup Section B		Remove Section A Materials			Dec 10 - 16				
C1220-Review Bids 1			es 🔳	13 📶 🖨 🖛				+2 weeks				
5			Remove Hazardous Materials	Setup Section D	Remove Section C Materials	Remove Section B Materials		0 Tasks Due				
EC1240-Review Bids f				45 🔟 👁	65 m	66 🔟		Dec 17 - 23				
() EC 1250 Review Bids 1	DEC1220 Review Bids for E	hick					+3 weeks					
	() EC1250-Review Bids for F	Tooring			-			0 Tasks Due				
EC1260-Award Contra			Dec 24 - 30									
2				EC1250-Award Contract	EC1100 Prepare and Solicil Bids for Heat Pump			+4 weeks				
EC1270-Award Centra					C commenter and and a			0 Tasks Due				
EC1230-Deliver Brok												

Once work is prioritized and processed through the Outage Management System, work can be quickly assigned to crews simply by dragging and dropping each activity, as shown in the illustration above. This allows resources to be optimized and crews to be deployed efficiently to the right locations, resulting in a smooth, safe, and efficient restoration.

CONCLUSION

Storm restoration is a vital capability that utilities need to continue to improve. By automating damage assessment, focusing on reducing the time for storm restoration, utilities can achieve cost reductions, improved customer satisfaction and reduced safety incidents. Fundamentally, technology is the key element that will enable this transformation.

2021 Copyright CobraVision. All rights reserved. Screen Shot Credit: Oracle

www.cobravision.ai